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Abstract
Based on the effective coordination number (ECN) viewpoint a model for the size dependency
of cohesive energy of nanocrystals has been developed. In order to calculate ECN both
un-relaxed and relaxed surfaces have been considered. It has been shown that bond
order–length–strength (BOLS) correlation mechanism can be described successfully by
adopting an average ECN approach. Based on ECN and the fundamental effect of cohesive
energy on physical quantities, the size dependency of the following parameters has been
established: melting temperature, evaporation temperature, Debye temperature, vacancy
formation energy of nanocrystals and surface tension of nanodroplets. Predictions for the size
dependency of the aforementioned properties are in good agreement with the BOLS model and
available results from experimental and simulation studies.

1. Introduction

Nanocrystals have unique properties which result from their
high fraction of surface atoms. They represent an intermediate
state of matter which falls between the molecular and bulk
solid states. Within this size regime many new phenomena
have been observed which can lead to new applications. The
prominent difference between a nanocrystal and its bulk state
is the significant portion of the lower-coordinated surface
atoms [1]. In fact a large fraction of surface atoms leads
to a decrease in the average coordination number (ACN) of
nanocrystals. The size dependency of many physical properties
of nanocrystals can be explained by the low coordination
number (CN) of surface atoms [1–7]. The activity of supported
catalysts increases with decreasing particle size and that can be
related to the number of low-coordinated atoms present in the
particles [8, 9]. It has been found that ACN determines the
effective hybridization and therefore the magnetic moment of
the clusters [10]. A decrease in ACN causes a transition from
bulk to atomic or molecular properties [11], e.g. as atomic CN
reduces to much lower values the bond nature evolution cause
a conductor–insulator transition [12]. Based on the effective
coordination number (ECN) concept, the size dependency of
ionization potentials [13] and core level shift of transition

metal clusters have been successfully described [14]. The
CN viewpoint can be useful to describe many other physical
phenomena, for example the grain boundary in solids can
be considered as low-coordinated atoms [15]. Also the CN
distribution can explain the difference between the ordered
solid and amorphous state [1]. In fact the amorphous state
is the randomly distributed CN of atoms and this leads to the
broad temperature range for glass transition of an amorphous
state [16]. From these arguments, it is easy to conclude that
measuring ACN will be a significant method to determine
many physical and chemical properties. Extended x-ray
absorption fine structure (EXAFS) spectroscopy is a practical
way to measure the average CN of small particles, from which
a size estimate can be deduced [17]. The estimate of particle
size by EXAFS relies on an accurate determination of ACN
for the different neighboring atomic shells [18]. It should be
noted that the measured CN can be affected by temperature, so
in order to reduce the errors caused by temperature the EXAFS
experiments are carried out at low temperatures [19].

ECN and ACN are different quantities and the distinction
between them should be considered. ECN is defined for
each atom but ACN is the average CN of all the atoms of a
nanocrystal. The ECN of each atom in a nanocrystal can be
different and is affected by the position and the CN of other
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atoms, but the ACN is identical for nanocrystals of same size.
The ACN can either be expressed by the ECN or without it, for
example the ACN can be obtained by geometric characteristics
of clusters without considering the real (effective) CN of
atoms [17]. If the average ECN of all atoms is calculated
the average effective coordination number (AECN), which is
a kind of ACN, will be obtained.

One of the most important properties of a solid, which
depends directly on the CN, is its cohesive energy. The
cohesive energy is responsible for the atomic structure, thermal
stability, atomic diffusion, crystal growth and many other
properties [1, 2]. In fact the cohesive energy quantity provides
a natural link among the various models which have been
developed to account for different physical properties. The
cohesive energy of a nanocrystal is dependent upon its size,
and several models discuss this size dependency [1–7, 20].
Hence from the above statements it is clear that a model which
correlates ECN and cohesive energy of nanocrystals will be
significant.

In this work a relation between the average ECN and the
cohesive energy of nanocrystals is established. Also, attempts
have been made to explain the BOLS correlation mechanism
in light of the ECN of relaxed surfaces. Finally based on the
size dependency of cohesive energy, some important physical
properties are investigated.

2. The model

2.1. Effective coordination number (ECN) and
cohesive energy

The atomic cohesive energy can be different due to the
variation of atomic CN environment at various locations of
the solid. Here a general equation is suggested for the atomic
cohesive energy of small particles. The atomic cohesive energy
of an atom i (Ei ) can be generally expressed by the bulk
cohesive energy (Eb) as follows

Ei = Eb
Ze,i (Zi)

Zb
(1)

where Ze,i and Zb are the ECN of the atom i and the bulk
atom, respectively. In this equation it has been assumed that
Ze,i is a function of the CN of atom i (Zi ), i.e. Ze,i = f (Zi).
In the simplest case, ignoring surface relaxation Ze,i is equal
to its corresponding CN, i.e. Ze,i = Zi . Here equation (1)
can be compared to the relation presented by Tomanek et al
[3] for the cohesive energy of an atom (Ei ) for small clusters;
Ei = Eb(Zi/Zb)

1/2. In their relation surface and bond
contraction have not been considered. But in equation (1) Ze,i

is the general quantity for the ECN of atoms which can be
affected by size, bond order, bond length, surface relaxation
and other parameters. The suitability of the equation suggested
to predict the cohesive energy of nanocrystals will be discussed
in sections 2.2 and 2.3 for un-relaxed and relaxed surfaces,
respectively. Applying the summation to equation (1) and
summing over the total number of atoms (nt), we get:

nt∑

i=1

Ei

Eb
=

nt∑

i=1

Ze,i (Zi)

Zb
. (2)

The cohesive energy (Ec,t ) or coherency of the nanocrystal
is the sum of bond energies over all the coordinates, i.e. Ec,t =∑nt

i=1 Ei . Two average quantities can be defined for the
nanocrystals, the average cohesive energy as Ec,n = Ec,t/nt

(Ec,b = Eb) and the average ECN as Z̄e,n = (
∑nt

i=1 Ze,i )/nt Zb

can be considered as the average ECN of bulk atoms (Z̄e,b)
i.e. Z̄e,b = limnt→∞ Z̄e,n = Zb. So equation (2) can be written
as nt Ec,n/Ec,b = nt Z̄e,n/Zb and finally we have:

Ec,n

Ec,b
= Z̄e,n

Z̄e,b
. (3)

Ec,n and Ec,b are the cohesive energy per atom for the
nanocrystal and the bulk atoms, respectively. Z̄e,b can be
considered as the CN of atoms in the lattice for the bulk, for
example 12 and 8 for face-centered cubic (FCC) and body-
centered cubic (BCC) lattices, respectively. When the size
of nanocrystal increases, Z̄e,n tends towards the bulk average
ECN (Z̄e,b), i.e. Z̄e,n(∞)/Z̄e,b = 1 and so Ec,n/Ec,b =
1. In equation (3) the effect of all the atoms in different
positions such as edge and corner can be considered. Hence
it can be applied to cluster structures such as icosahedral and
cuboctahedral.

2.2. Cohesive energy for un-relaxed surfaces by Ze,i = Zi

In the simplest approach, it can be assumed that the ECN
of each atom (Ze,i ) is equal to its corresponding CN
(Zi ), without any influence from bond length, order and
relaxation. However, it should be noticed that Zi decreases
with decreasing size [7]. The average ECN (Z̄e,n) of a
nanocrystal is defined as the average ECN of surface and
interior atoms. Considering Ze,i = Zi we have: Z̄e,n =
(nS · ZS + nI · Z I)/(nS + nI), where nS and nI are the surface
and interior number of atoms, respectively. The surface CN
(ZS) may include edge and corner as well as atoms located
in faces of crystalline planes. Note that ZS is the number of
surface bonds, without considering bonds to interior atoms.
Simplifying, we have:

Z̄e,n = Z I

(
1 −

(
1 − ZS

Z I

)
nS

nt

)
. (4)

Since Z I equals the CN of interior atoms, and surface
atoms do not affect that, a good approximation is to assume
that it is equal to the bulk CN and hence Z I

∼= (Zb =
Z̄e,b). This is a reasonable assumption, because theoretically,
nanoparticles have an interior structure comparable to that of
bulk structure [21]. nS/nt has been calculated by considering
the effect of crystal structure in previous works [4, 5] as
follows:

nS

nt
= 4PS(3 − λ)/3

PL(D/d) + 2PS(3 − λ)/3
(5)

where D is the size of nanocrystal. D can be the diameter
of spherical nanoparticles, nanowires and the thickness of
nanofilms. λ is a parameter representing the dimension of the
nanocrystal: λ = 0 for nanoparticles, λ = 1 for nanowires,
and λ = 2 for nanofilms. PS is the packing fraction of the
surface crystalline plane (the ratio of the area of the surface
plane occupied by atoms to the total area of the plane). PL
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is the lattice packing fraction (the ratio of the volume in the
unit cell of lattice occupied by atoms to the total volume
of the unit cell) and also d(=2r) is the atomic diameter of
the atoms building the nanocrystal. r is the atomic radius
deduced from atomic volume Va = 4πr 3/3. Using the term of
‘sphere’ or ‘rounded’ for nanocrystals needs more explanation.
When the details of surface morphology of different isomers
do not significantly affect nanocrystal surface energy, a simple
‘sphere’ and ‘rounded shape’ becomes an efficient model [17].

Here Do is introduced as the size of nanocrystal for which
all of the atoms are located on the surface of the nanocrystal,
i.e. nS = nt, hence from equation (5) Do equals Do =
(2/3)(3 − λ)(PS/PL)d . So by substituting the value of Do

in equation (5) and using equations (3) and (4), the cohesive
energy is obtained as follows:

Ec,n

Ec,b
= Z̄e,n

Z̄e,b
= 1 − (1 − ZSb)

(
2Do

D + Do

)
(6)

where ZSb is equal to ZS/Zb. Generally the system tends to
minimize its total energy and this requires the surface energy be
as small as possible [22]. So for an equilibrium state, changing
from a higher to a lower surface energy is important. We may
expect the surface energy to be less for planes having a greater
density of atoms, such as the FCC (111), because generally
the contribution that a surface atom makes to surface energy
decreases as its CN increases [22]. So in the present model
for the FCC and BCC crystal structures the most compacted
crystalline planes, (111) and (110), respectively, have been
considered. Hence for sufficiently large particles (close to the
bulk), we have ZSb = 1/2 (for example, for an FCC bulk
material in the bulk mode the CN of surface and lattice atoms
is 6 and 12, respectively). As the particle size is reduced,
the surface curvature will increase and the surface atomic CN
will decrease further. In fact the CN of an atom in a highly
curved surface of small sizes is lower compared with the CN
of an atom on a flat surface in bulk mode [1]. Hence for very
small particles we may expect that ZSb > 1/2 and ZS =
Zb/4 is more suitable and this has been confirmed in previous
works [4, 7]. In equation (6) the effects of edge and corner
atoms have been ignored and this may lead to some deviation
at the lower range of size. Contributions from the edges and
corners are expected to be significantly smaller than that of the
surfaces (faces) of nanocrystals larger than ∼3 nm [23], so it
is reasonable to assume that edge and corner will have limited
significance for nanocrystals larger than this size.

2.3. BOLS correlation mechanism in terms of ECN
(Ze,i = Zi · (ci (Zi))

−m)

Here it will be shown that the ECN approach presented
in section 2.1 is useful to describe the BOLS correlation
mechanism. As a result of reduced coordination, most surfaces
relax inward [24]. The finding of surface bond contraction
has led to the bond order–length–strength (BOLS) correlation
mechanism [1, 2, 25, 26]. In fact the BOLS correlation
mechanism has been demonstrated in the shape-and-size
dependence of nanocrystals [1]. In the BOLS correlation, it has
been proposed that the CN imperfection of an atom at a surface

causes the remaining bonds of the lower-coordinated surface
atom to relax spontaneously [2]. In the BOLS mechanism the
bond length (the diameter of an atom) in the i th atomic layer di

is a function of Zi as di = ci (Zi)d , where d is the bond length
of an atom without CN limitation. Contraction is greater for
the lower CN of the surface atoms. The obtained relation for
the ci(Zi ) based on Goldschmidt’s premise and Feibelman’s
finding is:

ci(Zi ) = di

d
= 2

(
1 + exp

(
12 − Zi

8Zi

))−1

. (7)

In the BOLS model the relation between the cohesive
energy of an atom and its bulk value is obtained from Ei =
c−m

i Eb [1]. By comparing this relation with equation (1), a
new value for the ECN of an atom will be obtained by:

Ze,i = Zi · (ci (Zi))
−m . (8)

Equation (8) suggests that the ECN of an atom depends on
the energy change of the relaxed single bond with the reduced
bond length (c−m

i ) · m is an adjustable parameter, which varies
according to the nature of the bond. Studies [1] have revealed
that for elemental solids, m ≈ 1 and for compounds and alloys
it is in the order of 4. So considering BOLS correlation the
average ECN (Z̄e,n) can be defined as:

Z̄e,n =
(

nt∑

i=1

Zi c
−m
i

)/
nt

=
(

nt Zb +
∑

i�3

ns,i (Ze,i − Zb)

)/
nt (9)

where ns,i is the number of atoms in the i th atomic layer. In
the BOLS correlation no bond-order loss is expected up to 3
from the outermost atomic layer to the center of the solid. By
simplifying, equation (9) can be written as:

Z̄e,n

Zb
= 1 +

∑

i�3

γi j(Zibc−m
i − 1) (10)

where γi j = ns,i/nt = τci d/D is the portion of the atoms
in the i th atomic layer from the surface compared to the
total number of atoms of the entire solid and τ = 1, 2, 3
correspond to plates (thin films), nanowires, and nanoparticles,
respectively. Zib is equal to Zi/Zb and as mentioned earlier
Zb can be considered as the ECN of atoms in the bulk
i.e. Z̄e,b. Now by considering the obtained relation between
the cohesive energy and the average ECN (equation (3)) and
using equation (10), the BOLS correlation mechanism can be
expressed by this new form:

Ec,n

Ec,b
= Z̄e,n

Z̄e,b
= 1 +

∑

i�3

γi j(Zibc−m
i − 1). (11)

Equation (11) is the other interpretation of the BOLS
correlation which considers the ECN model. In fact
equation (11) proposes that the BOLS correlation can be
deduced from the average ECN approach (equation (3)).
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3. Cohesive energy and size dependency of
physical properties

Here proportionality between cohesive energy and some
important physical properties are investigated. Then the size
dependency of these properties is discussed in the light of the
obtained relation between the cohesive energy and the ECN
(equation (3)).

3.1. Melting point of nanocrystals

The most prominent example of the deviation from thermody-
namic behavior as a result of size effect is probably the de-
pression of the melting point of small particles [27]. Hence
the melting point depression can be used in order to achieve a
comprehensive understanding of the thermodynamics of nano-
metric systems [28, 29]. Melting point is a parameter to esti-
mate the strength of metallic bonds; hence its proportionality
with cohesive energy can be expected. The scaling relation be-
tween the melting point of pure metals to their cohesive energy
inferred from the universal binding theory of solids [30, 31] is
Tm,b = 0.032Ec,b/kB [32]. This expression confirms a linear
relation between melting point and cohesive energy for bulk
materials but the effect of crystal structure of solids has not
been included. So, this is proper only for solid elements with
simple crystal structure, such as FCC and BCC [33]. Hence,
for those elements with a complex structure, e.g. diamond
structure, orthorhombic and complex hexagonal closed packed,
a noticeable deviation is predicted [33]. In many models the
effect of lattice structure has not been considered and only the
proportionality between cohesive energy and melting point has
been used. So a model which considers the effect of lattice and
surface structure seems to be necessary. By applying this pro-
portionality to the nanoscale (i.e. Tm,n = 0.032Ec,n/kB), we
have:

Tm,n

Tm,b
= Ee,n

Ee,b
. (12)

Surface atoms of a free-standing nanocrystal experience
greater vibrational amplitude than those in the bulk, as they
have no neighbors above them to restrain them. However
surface atoms of supported nanocrystals have lower degree of
freedom. So, considering proportionality between ECN and
cohesive energy, equation (12) indicates that Z̄e dictates the
process of overheating for supported particles when Z̄e > Zb

or undercooling for free-standing particles when Z̄e < Zb.

3.2. Evaporation temperature of nanocrystals

The size dependency of cohesive energy can influence the
evaporation temperature (Tvap) of nanocrystals [34]. From
the Kelvin effect, it can be expected that the evaporation of
nanoparticles is size dependent and it is essential to know this
for their application at higher temperature [35]. Melting and
evaporation are measures of thermal stability of a material and
both of them decrease with decreasing particle size [35, 36].
Nanda et al [36] found a linear relationship between Tvap and
the inverse of the particle size which shows the variation of
Tvap with particle size is similar to the variation of the melting
point (Tm). All these imply that evaporation temperature is
proportional to cohesive energy as is the case for melting

point. Furthermore the proportionality between Tvap and Ec

can be found from the theory of phase transitions. Sun et al
[26] have suggested TC ∝ f 2

C Ec, where TC is the transition
temperature and fC is a coefficient of the thermal expansion
magnitude of an atom at TC. Therefore a universal form for
the relative change of critical temperatures for possible phase
transitions such as evaporation and solid–liquid transition can
be obtained in terms of cohesive energy. It is worth noting
that the first-order phase transformation cannot happen in the
nanoscale regime of size, because in small systems temperature
fluctuation leads to transitions taking place over a temperature
interval [37]. Therefore from the proportionality of Tvap and
Ec we have:

Tvap,n

Tvap,b
= Ec,n

Ec,b
. (13)

3.3. Debye temperature of nanocrystals

The Debye temperature (�D) is a significant characteristic
of the structural parameter of a solid, which is directly
related to the binding force between atoms constituting
materials [38]. Therefore, the investigation of �D can play
a key role in understanding many material properties of
nanostructures, such as the thermal vibration of atoms, phase
transitions and volume thermal expansion coefficient [38–43].
Some regard �D as the most important and useful single
physical property of a crystal [44]. There is a significant
connection between the Debye temperature and the melting
point. Lindemann [45] has suggested that at the melting point
of solids, the mean square displacement of thermal vibration
obtains some standard fraction of the square of the interatomic
separation. Lindemann’s theory of a vibrational limit can be
directly described by Debye temperature as follows [46]:

Tm,b = C M
(
�D,b

)2
v2/3 (14)

where M is the molecular weight, �D,b the Debye temperature
of bulk material, v the atomic volume and C a numerical
constant which is identical for all solids. This relationship
provides a convenient method for estimating the Debye
temperature of solids from knowledge of the melting point.
It has been qualitatively confirmed that the Lindemann
hypothesis is valid for small particles [47]. Therefore taking
into consideration the proportionality between melting point
and cohesive energy and using equation (14) we have:

�D,n

�D,b
=

(
Ec,n

Ec,b

)1/2

. (15)

3.4. Vacancy formation energy in nanocrystals

Vacancies are significant point defects that have a considerable
effect on the physical and chemical properties of materials
such as electrical resistance, heat capacity and diffusion
activity [48]. A vacancy is characterized by its formation
energy (Ev), which is equal to the energy that can form a
vacancy in a material. Tiwari and Patil [49] have shown that
there is a linear relation between vacancy formation energy
and the cohesive energy. This proportionality can be inferred

4



J. Phys.: Condens. Matter 20 (2008) 325237 M Attarian Shandiz

Figure 1. Dependence of melting point on the size of Au nanoparticles in terms of equation (6) and the BOLS model. The lattice type of Au is
FCC (PL = 0.74, PS = 0.91). For Au r = 0.1594 nm and Tm,b = 1337 K [29].

Figure 2. Dependence of evaporation point on the size of Ag nanoparticles in terms of equation (6) and the BOLS model. The lattice type of
Ag is FCC (PL = 0.74, PS = 0.91). For Ag r = 0.1597 nm and Tvap,b = 1097 K [36].

from a thermal stability viewpoint. In fact vacancies can lead
to a significant decrease of the instability point compared to
an ideal lattice and hence high vacancy concentrations can be
a sign of melting point [50]. Therefore the energy of vacancy
formation is a function of the bond energy of the solid [51].
Furthermore, we can expect that the stronger bonds are harder
to break and so to create vacancies, Ev is naturally proportional
to the Ec e.g. for the metals it has been reported that Ev ≈
1/3Ec [52]. Hence by transferring the proportionality between
Ev and Ec to the nanoscale, we have:

Ev,n

Ev,b
= Ec,n

Ec,b
. (16)

3.5. Size-dependent surface energy and surface tension

The surface energy of solids (γsv) is defined as the energetic
difference between the surface atoms and interior ones. It is
an important physical parameter in controlling a wide range of
phenomena, such as the melting, coalescence, sintering rate,
phase transition and growth of nanoparticles [53, 54]. For
this reason, there have been many attempts to derive values
of the surface free energies. There are some models indicating
there is a linear relation between γsv and Ec. The simplest
approach for non-spin-polarized atoms [53] is counting the
broken bond number to create a surface area and multiplying
this number by the cohesive energy per bond which suggests

5
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γsv,b = 1 − (1 − ZS/Zb)Ec,b. In another approach (second-
moment tight bonding approximation) [55] the total energy of a
system can be expressed as a sum of the energetic contributions
of each atom which are proportional to the square root of the
related CNs, hence γsv,b = 1 − (1 − √

ZS/Zb)Ec,b. All
these approaches demonstrate that the bulk material surface
energy is directly proportional to cohesive energy i.e. γsv,b =
αEc,b, where α is a constant and a function of the CN. If
the nanocrystal has the same structure as the corresponding
bulk [56], the proportionality between surface energy and
cohesive energy can be extended to the nanoscale as follows:

γsv,n

γsv,b
= Ec,n

Ec,b
. (17)

For droplets the liquid–vapor interfacial energy or surface
tension (γlv) is an important quantity just like the surface
free energy for solids. Tolman [57] predicted that γlv should
decrease with decreasing particle size. It is known that for
metallic elements at melting point the ratio γsv,b/γlv,b = α′
exists [53]. Here α′ is a constant and γlv,b is the surface
tension of a droplet when its curvature is approximately equal
to a flat surface. Since the structure and energy differences
between solid and liquid are small in comparison with that
between solid and gas or between liquid and gas, the above
expression for the bulk solids is assumed to be applicable to
nanometer size with the same form, namely, γsv,n/γlv,n =
α′ [58]. Hence the size-dependent surface energy (γsv,n) can
be used to determine the γlv,n of nanodroplets and we have:

γlv,n

γlv,b
= Ec,n

Ec,b
. (18)

4. Results and discussion

Since cohesive energy is a fundamental physical quantity it is
expected that its variation will affect other physical properties.
If cohesive energy (Ec) at the bulk state is proportional to a
physical property, f , then we have Ec(∞) = k f (∞). Here
k is the proportionality constant and its value depends on the
nature of the physical property. For example, k is 0.032 in the
case of melting point [32]. This confirms that at the bulk state
in order to establish a relation between cohesive energy and
any other properties, the physical nature of properties should
be considered. If we assume that the proportionalities between
cohesive energy and other physical quantities are valid at the
nanoscale, we have Ec(D) = k f (D). By merging the last two
proportionality equations, we obtain a new relation which is
independent of k: Ec(D)/Ec(∞) = f (D)/ f (∞), similar to
the equations obtained in section 3. This equation indicates
that the size dependency of physical properties which are
proportional to cohesive energy get the same form. However to
obtain this result, the following assumptions have been made.
The proportionality between cohesive energy and a physical
property is valid for the bulk state and nanoscale alike and
that they share the same proportionality constant. The obtained
proportionality relation provides a useful means by which we
can estimate the size dependency of physical properties and

0 2 4 6 8
0.2

0.4

0.6

0.8

1

Experimental Data [40]
Experimental Data [41]
Experimental Data [42]
Root of Eq. (6) (Z

Sb
=1/4, λ=0)

BOLS model (m=1, τ=1)

Figure 3. Dependence of Debye temperature on the size for Fe
nanoparticles and Cu thin films in terms of equation (6) and the
BOLS model. The lattice type of Fe and Cu is BCC
(PL = 0.68, PS = 0.83). For Fe r = 0.1411 nm and
�D,b = 388 K [39] and for Cu r = 0.1413 nm and
�D,b = 343 K [39].

ideally to determine their exact quantities, provided that the
nature of them is considered.

The modeling results from equation (6) have been used to
predict several properties of nanocrystals. These predictions,
along with results from experimental studies and computer
simulations, are plotted in figures 1–5. In all the figures,
predictions of equation (6) for un-relaxed surfaces have been
compared with the results produced by the BOLS model. To
obtain numerical results for the BOLS correlation the CN
of the outermost three atomic layers are taken as 4, 6, and
8, respectively [25]. Furthermore, all atomic radii used in
equation (6) are calculated from atomic volumes found in [59].

Figure 1 illustrates the size dependency of melting
point depression of Au nanoparticles. Predictions made by
equation (6) are in good agreement with the experimental data.
Also good agreement with the BOLS model is achieved by
using ZSb = 1/2 and ZSb = 1/4 in equation (6) for large
and small particles, approximately D > 10 nm and D <

10 nm, respectively. This illustrates that ZSb will decrease as
the fraction of surface atoms in nanocrystals increases upon
decreasing the size.

The size dependency of evaporation temperature, Tvap,
of Ag nanoparticles is shown in figure 2. Results plotted in

6
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Figure 4. Dependence of vacancy formation energy on the size of Au nanoparticles in terms of equation (6) and the BOLS model. The lattice
type of Au is FCC. For Au r = 0.1594 nm and Ev,b = 1.27 eV [20]. The computer simulation result is according to the data in [20].

this figure illustrate the good agreement between predictions
made by equations (6) and (11) (the BOLS correlation) as
well as experimental data [36]. In order to plot equation (6),
ZSb = 3/8 has been used (which is the average of ZSb = 1/2
and ZSb = 1/4). This value was selected because the size
range of experimental data is moderately between the large
and small particles. The experimental data considered has been
measured by monitoring the temperature at which the particle
size decreases due to partial evaporation [36]. Decreasing
evaporation temperature with decreasing size has a significant
physical meaning and it leads to a higher surface energy for
nanocrystals than the bulk.

Model predictions in terms of equation (6) and the
available experimental data on the size dependency of Debye
temperature, �D, of Fe nanoparticles and Cu thin films are
shown in figure 3. The model results for different kinds of
free-standing nanocrystals correspond well to the experimental
data. This indicates that equation (6) is capable of making
reasonable predictions of the size dependency of �D. Also the
model predictions for Fe nanoparticles are in good agreement
with those obtained from the BOLS correlation.

The size dependency of the vacancy formation energy
of Au nanoparticles has been shown in figure 4. Due to a
lack of experimental data on Ev the only available molecular
dynamic results according to the data in [20] has been
used for comparison with the developed model as shown in
figure 4. From the figure it can be seen that Ev decreases with
decreasing size and the model’s results are in good agreement
with the simulated results and BOLS predictions.

Comparisons of γlv,n/γlv,b between the model predictions
and the computer simulation results [60] are shown in figure 5.
The model predictions demonstrate good agreement with the
results of computer simulations and are close to the predictions
made by the BOLS correlation. The decreasing surface tension
of the nanodroplet predicted by equation (6) is in agreement

with the Tolman prediction [57] for the size dependency of
surface tension.

The proportionality between the average ECN and
cohesive energy can be considered as an important relation to
use in obtaining the size dependency of physical properties.
For free-standing nanocrystals the average ECN decreases with
decreasing size and this leads to a fall off in the cohesive
energy. Hence in all the figures a decrease of the obtained
physical properties with decreasing size can be expected. In
figures 3–5 only ZSb = 1/4 has been used to plot the graphs,
because all the experimental and simulation results are in the
lower range of size and are smaller than 10 nm. It should be
noted that by increasing the size of a nanocrystal, the value of
a physical property may become closer to the assumption of
ZSb = 1/2; however, there are not enough experimental and
simulation results to show this.

In all the figures, using τ = 1 which is for the flat shape
in the BOLS model gave good consistency with experimental
and simulation results. Using τ = 1 to provide best
correspondence with experimental and simulation results has
been corroborated in the work of Sun and his co-workers [1, 2].
From figures 1–5 it is found that the un-relaxed ECN approach
(equation (6)) and the BOLS correlation mechanisms are
generally consistent with each other. Only in figure 3(b) does
the un-relaxed ECN predict different results as compared with
the BOLS model, because λ = 2 has been used to plot
equation (6). A decrease of the ECN of surface atoms (using
ZSb = 1/4) may explain the consistency between the results of
equation (6) (for un-relaxed surfaces) and the BOLS model. In
fact decreasing the CN of surface atoms and their relaxation
can be compared with each other. From the viewpoint of
numerical calculations, one could hardly judge which model
is preferred to the other though the physical indications of the
compared models are different.

The BOLS correlation model is applicable for many
nanomaterials [1, 2] such as Si, Ge, and carbon nanotubes
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Figure 5. Dependence of surface tension of Al and Na nanodroplets
on the size in terms of equation (6) and the BOLS model. The lattice
type of Al and Na is FCC (PL = 0.74, PS = 0.91). For Al
r = 0.1582 nm and for Na r = 0.2112 nm.

as well as many metals like Ag, Au, Sn, Pb. Also, the
BOLS model has been used successfully for different size
ranges, e.g. for nanocrystals larger or smaller than 5 nm and
even for clusters smaller than 1 nm [1]. The reason for
the BOLS model’s success is its dependence on the nature
of bonds and the difference of m (in equation (11)) for
metals, semiconductors, alloys and compounds. From the
above discussion it can be inferred that the ECN approach
(equation (3)) in terms of the BOLS model can be applicable
to various materials and the whole range of size.

Equation (3) has been derived for nanocrystals having
the same kind of atoms as well as no segregated atoms at
their surfaces. The applicability of the model for the alloys
and segregated surfaces needs more investigation and hence
it cannot be claimed that equation (3) has the same form for
them. Also, the results presented in this paper (figures 1–5) are
generally for the metallic elements. Hence, the applicability of
equation (6) (un-relaxed surfaces) for nonmetallic and other
elements needs more investigation. Furthermore, for very
small sizes, quantum effects and the fluctuation of values of
physical properties in that range cannot be ignored and hence
equation (6) is not applicable at this size range.

5. Conclusion

Based on the concept of the ECN, the size dependency of
the cohesive energy of nanocrystals, for both un-relaxed and

relaxed surfaces, has been modeled. It has been shown that the
ECN viewpoint can be useful in order to explain the BOLS
correlation mechanism. Furthermore, the ECN approach
has been used to investigate the size dependency of melting
point, evaporation temperature, Debye temperature, vacancy
formation energy, surface energy of nanocrystals and surface
tension of nanodroplets. All model predictions show good
agreement with the available experimental data and computer
simulations and also results obtained from the BOLS model.
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